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The negatively charged exciton in double-layer quantum dots
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Abstract. The hyperangular equation for charged semiconductor complexes in a double-layer harmonic
quantum dot was solved numerically by using the correlated hyperspherical harmonics as basis functions.
By using this method, we have calculated the energy spectra of the low-lying states of a charged exciton
as a function of the radius of the quantum dot and the binding energy spectra of the ground state as a
function of the radius of the quantum dot for a few values of the distance between the vertically coupled
dots and the electron-to-hole mass ratio.

PACS. 73.20.Dx Electron states in low-dimensional structures (superlattices, quantum well structures and
multilayers) – 71.35.-y Excitons and related phenomena – 78.66.Fd III -V semiconductors

1 Introduction

Recently, there has been considerable experimental and
theoretical interest in charged excitons in quantum dots
(QD’s). The charged excitons result from the binding of
an exciton (an electron-hole pair) with an extra elec-
tron or hole in semiconductor QD’s. The existence of
two kinds of charged excitons was first suggested by
Lampert [1]. In the past few years, experimental evidence
of the existence of X− (eeh) resulting from the Coulombic
interaction between an exciton and an electron in semicon-
ductor quantum well structures [2,3] has stimulated inten-
sive theoretical study of charged excitons in semiconductor
heterojunctions [4,5].

Due to relatively the small binding energy of trions,
i.e. charged excitons, in bulk semiconductors, they can
only be observed at very low temperatures (T ≤ 10 K).
This situation limits to some extent their practical im-
portance in semiconductors. Recent progress in semicon-
ductor technology has made possible the fabrication of
individual QD’s. Such microstructures confine charged
particles in all three space dimensions. The reduced di-
mensionality enhances considerably the binding energy of
charged excitons [6], and thus facilitates the experimental
observations, X+ (ehh) involving an exciton and a hole
has also been observed experimentally [7]. Theoretically,
several models have been proposed for evaluating the bind-
ing energy of charged excitons in ideal two dimensions
at zero magnetic field; this includes a variational calcu-
lation using the Hylleraas-type trial wave function [6,8],
analytical results for a linear model [9] and others [10].
From a theoretical point of view, these few-body systems
represent a challenging problem. The standard tools of
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the condensed-matter physicist like the many-body tech-
niques relying on Hartree or Hartree-Fock approximations
are often not sufficient since the exchange and correla-
tion energies can be far from negligible [11]. A fully quan-
tum mechanical treatment is needed. In the general case,
this requires numerical calculations that can become quite
time-consuming as the number of particles grow.

The purpose of this paper is to present a model calcu-
lation of negative excitons in a structure consisting of two
spatially separated coupled QD’s by using the correlated
hyperspherical harmonics as basis functions. The center-
to-center distance of the two QD’s is d. Each layer QD has
only one type of charge carrier (two electrons or a hole).
The effective separation d may be tuned by an applied
electric field. For most QD’s, the harmonic oscillator is
a very good approximation to describe the lateral confine-
ment [12,13]. Hence, we assume that the confinement of
the x− y plane is provided by a harmonic potential, and
that the confinement of the z-direction is provided by an
infinitely high potential, and the lowest subband in each
QD is occupied.

We will investigate the energy spectra of the low-lying
states of a negatively charged exciton in double-layer QD’s
as a function of the dot size. On the other hand, we will
show the dependence of the binding energies of the neg-
atively charged excitons on the radius R for a few val-
ues of the distance between double-layer QD’s and the
electron-to-hole mass ratio.

2 Model and method

Consider a charged exciton of strictly 2D e- and h-layers
separated by a distance d (see Fig. 1). In both dots the
lateral confining potential within each layer is assumed
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Fig. 1. Schematic configuration of double-layer quantum dots.

to be parabolic. With the effective-mass approximation,
the Hamiltonian in the laboratory frame can be written
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where mi is the mass of particle i and m1 = m2 = m∗e
(the effective mass of an electron), m3 = m∗h (the effective
mass of a hole), ri (pi) is the position vector (momentum)
of particle i, rij is the distance between particles i and j,
and ω0 is the strength of the confinement. In this paper,
we follow the lines of Que [14] and use the same parabolic
frequency for both holes and electrons but quite differ-
ent masses. The interaction between the three particles is
modeled by a Coulomb potential which is screened by a
quite phenomenological dielectric constant ε. To maintain
that the kinetic energy operator is diagonal, we introduce
Jacobi coordinates to describe the relative motion. We can
choose ρ1 = r12, the vector from 1 to 2, and ρ2 = r12,3,
the vector from the center of mass of 1 and 2 to particle 3.
In this coordinate system, the Schrödinger equation in the
center-of-mass frame takes the form[
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where µ1 = m∗e/2 and µ2 = 2m∗em
∗
h/(2m

∗
e + m∗h) are the

reduced masses of the pair 1 and 2, and the pair 12 and 3,
respectively. This particular set of Jacobi coordinates will
be referred to as the α-set. There are two other possible
Jacobi coordinates: the β-set where ρ(β)

1 is the vector from
2 to 3 and ρ(β)

2 is from the center of mass of 23 to 1; and the
γ-set where ρ(γ)

1 is the vector from 3 to 1 and ρ(γ)
2 is from

the center of mass of 31 to 2. These vectors are depicted in
Figure 2. For systems consisting of two identical particles,
the β-set and γ-set are equivalent and the wave function
should be properly symmetrized.

We also notice that the Schrödinger equation (3) can
be written in terms of β-set or γ-set Jacobi coordinates as

Fig. 2. Three sets of Jacobi coordinates for systems of the
negatively charged excitons.

well, with the corresponding reduced masses µ1 and µ2.
The superscripts in the coordinates and reduced masses
will not be specified unless such a distinction is needed in
the discussion.

One can introduce mass-weighted hyperspherical coor-
dinates by defining

ξ1 =
√
µ1/µρ1, ξ2 =

√
µ2/µρ2 (4)

where µ is arbitrary (taken to be unity in general). In term
of ξ’s, the Schrödinger equation (3) now takes the form[
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such that the kinetic energy and the confinement potential
operators associated with the two “particles” are identical,
and all the mass dependence of the three particles is cast
in the rescaling of the distances.

From ξ’s, it is straightforward to introduce the hyper-
spherical coordinates

ξ =
√
ξ2
1 + ξ2

2 , tanφ = ξ2/ξ1 (6)

where ξ is the hyperradius and φ = φ(i) (i = α, β, γ) is
the hyperangle. We note that the hyperradius ξ is inde-
pendent of which set of Jacobi coordinates is used. Thus
the two vectors ξ1 and ξ2 are replaced by four coordi-
nates (ξ,Ω), where Ω = (φ, ϕ1, ϕ2) denotes collectively
the five angles, with ϕi being the polar angle of the vector
ξi. Physically, ξ measures the size, while Ω describes the
shape and orientation of the system.
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With hyperspherical coordinates, the Schrödinger
equation (3) is then given by[
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where `2(ϕ1) = −i∂/∂ϕ1. The grand angular momentum
operator Λ2(Ω) is translationally invariant, i.e.,

Λ2(Ωα) = Λ2(Ωβ) = Λ2(Ωγ), (9)

therefore, the hyperspherical harmonics in different sets of
hyperangles are simply the different representations. The
eigenvalues and eigenfunctions for the Λ2(Ω) operator are
known [15],

Λ2(Ω)Y[K](Ω) = λ[K](λ[K] + 2)Y[K](Ω) (10)

λ[K] = 2m+ |`1|+ |`2| (11)

where the analytical expression for Y[k](Ω) is given in
reference [15], [K] denotes the set of quantum numbers,
[K] = (`1, `2, m), with m related to the polynomial func-
tions in angle φ, `1 + `2 = L is the total orbital angular
momentum. With coordinate set (α) imposing the particle
exchange symmetry, Y[K](Ω(α)) is straightforward, i.e., `1
is odd for S12 = 1 and `1 is even for S12 = 0; with coor-
dinate sets (β) and (γ) imposing the exchange symmetry,
it is more complicated [15]. The eigenfunctions in one set
can be expanded in terms of eigenfunctions of the other
set with λ[K] = λ[K′],

Y[K](Ωi) =
∑
[K′]
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where the expansion coefficients B[K],[K′] can be evaluated
from
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∫
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These coefficients are called the transformation bracket
and a program for their evaluation has been published [16].
These transformation brackets are useful when evaluating
integrals involving functions of different sets of Jacobi co-
ordinates. C/ξ is the total Coulomb interaction potential
among the three charged particles, with C given by
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Since the set of hyperspherical harmonics forms a com-
plete set on each hyperspherical surface, the solution of the
Schrödinger equation can be expanded as

Ψ =
∑
[K]

R[K](ξ)Y[K](Ω). (15)

By projecting out the hyperspherical harmonics, a set of
coupled second-order hyperradial differential equations is
obtained[
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where
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is the matrix element of the effective charge C evaluated
between two hyperspherical harmonics. Equation (16) can
be solved to obtain the eigenvalues if convergence can be
achieved by using a reasonable truncated set of hyper-
spherical harmonics. The method has been applied by a
number of authors to H− and He [17,18].

As the two bound electrons of the trion are identi-
cal, so a proper picture must include the antisymmetry of
the state when the electrons are exchanged. The role of
exchange for two electrons is the same as in the textbook
example of the He atom. The wave function factorizes into
a spatial part and a spin part, which can have either total
S12 = 0 (singlet) or S12 = 1 (triplet). The singlet state
is antisymmetric under the exchange of spins, so to retain
the correct overall antisymmetry of the wave function, the
spatial part must be symmetric. The triplet, by contrast,
is symmetric, so the corresponding spatial part must be
antisymmetric. Hence, the eigenstates are classified by the
total spin S12 of the two electrons and the total orbital
angular momentum L of the trion.

3 Numerical results and discussion

In this paper, effective atomic units are used so that all
energies are measured in units of the effective Rydberg
Ry∗ and all distances are measured in units of the effective
Bohr radius a∗B. Using σ = m∗e/m

∗
h = 0.196, i.e., m∗e =

0.067me (me is the free-electron mass), m∗h = 0.342me,
ε = 12.4 for GaAs, we find Ry∗ = 4.955 meV and a∗B =
117 Å. The dimension of the basis is increased until the
required accuracy is achieved. The states will be denoted
by 2S12+1L.

The correlation energy of a negatively charged exciton
is defined as

Ec = E − 2Ee − Eh

with E the energy level of the negatively charged exciton,
and Ee and Eh the energy levels of the free electron and
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Fig. 3. Variations of the correlation energies of a negatively
charged trion X− in a double-layer quantum dot (d = 1.0a∗B)
as a function of the dot radius with a fixed value of σ = 0.196.

hole, respectively, in the quantum dot. Thus, Ec is the en-
ergy due to the Coulomb interaction between the charged
particles. In Figure 3, we plot the correlation energies Ec

of L = 0 and L = 1 states of the trion as a function of
the QD radius R for σ = 0.196 with d = 1.0a∗B. Two dif-
ferent values of the spin are considered. From Figure 3
we can find the following results. (1) The correlation en-
ergies decrease when the dot radius increases. Evidently,
all three charged particles would prefer to be close to the
common axis due to parabolic confinement. However, elec-
trons 1 and 2 in the same layer would not be close to each
other. Therefore, as the radius increases, the physical ori-
gin of the decrease of correlation energies is related to the
decrease of the electron-hole attraction. (2) The ground
state is the 1S state. (3) The second state of the trion is
the 3P state and the energy of the 3S state is the highest.
These results can be easily explained from an analysis of
symmetry [19]. Obviously, the equilibrium configuration
of the present system is an isosceles triangle (IST) with
its height parallel to the common axis called an upstand-
ing IST (or an UIST). Though in quantum mechanics, a
system cannot possess a definite geometrical shape as its
classical correspondent does, the distribution of the wave-
function of low-lying states should be smoothly (without
nodal lines) peaked at the UIST in order to minimize the
interacting energy. However, for an UIST configuration a
rotation by 180◦ is equivalent to an interchange of the elec-
trons 1 and 2. This implies that the UIST configuration
would be completely prohibited by symmetries unless the
values of L takes the numbers fulfilling (−1)L = (−1)S12 ,
i.e. L = even if S12 = 0, and L = odd if S12 = 1. In the
case of (−1)L 6= (−1)S12 , an inherent nodal line appears
for the UIST, and the binding of the state is spoiled.

Fig. 4. Dependence of the binding energy W on the QD radius
R, normalized by the bulk exciton Bohr radius a∗B, is plotted
for a few values of the distance d between the double-layer dots
with a fixed value of σ = 0.196.

The possibility of observing a negatively charged ex-
citon depends on its stability against dissociation into an
exciton and a free electron. It may be verified that the
corresponding sufficient stability condition reads

W = Ec
X −Ec ≥ 0 (18)

where W denotes the charged exciton “binding energy”,
while the Ec

X of the exciton is defined by

Ec
X = EX −Ee −Eh (19)

where EX is the exciton ground-state “relative” energy.
The dependence of W on the QD radius R is plotted in

Figure 4 for a few values of the distances d with σ = 0.196.
When d < 0.03a∗B, the binding energy increases as the ra-
dius is reduced. However, when d ≥ 0.03a∗B, as the dot
size is reduced further, the binding energy begins to de-
crease and eventually becomes negative, i.e., there exists
a critical radius Rc, such that if R > Rc (R < Rc) the
configuration of the negatively exciton is stable (unsta-
ble). From W = 0, we can obtain the value of Rc, this
critical position is dependent of the distance d between
the double-layer QD’s. On the other hand, we note that
the binding energy decreases when the d increases. The
reason for this is related to the decrease of the electron-
hole attraction with the displacement of the hole from the
center of the QD when compared to the constant electron-
electron repulsion.

In order to see more clearly the importance of the mass
ratio in enhancing the trion binding energy, we plot W as
a function of the QD radius R in Figure 5 for several values
of the electron-to-hole mass ratio with a fixed value of d
(= 0.02a∗B). The binding energy increases with decreasing
σ = m∗e/m

∗
h and takes a maximum value at the hydrogen
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Fig. 5. Dependence of the binding energy W on the QD ra-
dius R, normalized by the bulk exciton Bohr radius a∗B, is plot-
ted for a few values of the mass ratio σ with a fixed value of
d = 0.02a∗B.

limit (σ = 0). For a sufficiently large σ, we find that the
binding energy has a maximum as a function of R. The
binding energy starts to decrease after this maximum, and
for sufficiently small R it can even become negative, indi-
cating an unbinding of the X− state.

This work is financially supported by the National Natural
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